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1. Introduction 
Many wireless sensor network applications have real-time 

requirements where sensed data must be delivered to a base 
station within a deadline and before the data becomes old.  
For example, a system that monitors temperature in a nuclear 
power plant would require that the readings be reported to a 
base station within enough time for a proper response to be 
made to a rapid increase in the temperature.   

A great deal of research exists for scheduling in 
traditional networks.  Our goal is to leverage some of this 
work to provide scheduling analysis and techniques for sensor 
networks.  This abstract presents a mapping of a well-known 
real-time model to a particular type of sensor network 
application in which queries are made at a base station, and 
results are collected in the network and routed back to the 
base station.   

Some work has been done in the area of real-time 
scheduling for sensor networks [1,2,3,4,5].  However, in most 
of these cases, scheduling is ad hoc, and there is no overall 
model to provide a level of certainty that the timing 
constraints will be met. 

 
2. Model  

Assumptions.  As a starting point, we assume a static 
sensor network with known locations of motes and known 
reliability of communication links, such as might be found in 
a monitoring a nuclear plant or monitoring a relatively stable 
environment. We assume that there can be multiple base 
stations, each of which has an internal model of the sensor 
network (described below).  We assume that the queries for 
sensed data are periodic, long-lived, and that some have 
timing constraints on both the query and the validity of the 
data. Regular monitoring of nuclear reactor temperature data 
is an example of such a query.  

Motes and Network.  Each mote, mi, has (limited) 
computing resources, a radio, and possibly a sensor.  Between 
each pair of motes, mi and mj, we define communication 
reliability, Rij.  Each mote, mi, has a set of neighbors Ni that 
represents the set of all nodes with which mi can communicate 
with a reliability above a threshold Rmin.   

Queries.  Each query, Q, is periodic (PQ) and may have a 
deadline (DQ) that is different from the period.  The size of a 
data item requested by query Q is denoted SQ. 

 

3. Schedulability Mapping and Analysis 
In order to leverage the rich scheduling theory that exists, 

we map the well-known real-time model consisting of end-to-
end tasks and resources [6], to our model of a real-time sensor 
network. 

Tasks.  The passing of data from a sensor mote to the 
base station is represented as an end-to-end task (E2E task). 
That is, the E2E task starts from the point where the data was 
collected, goes through intermediate motes in the route, and 
ends at the base station on which the query originated.  Each 
sending of data from one mote to another in the route is 
represented as a subtask. Suppose that a mote mi requires two 
hops to get its data to the base station, by going through mote 
mj.  The sending of the data from mi to the base station 
becomes an E2E task with two subtasks:  mi → mj and mj → 
base station. There are dependencies among the subtasks such 
that one subtask may not execute until the subtask that sends 
to it is complete. 

Execution time.  The sending of a piece of data 
represents the execution time of the task.  The time it takes a 
mote to transmit a unit of data originating at mote mi is Ei.  
Thus, the execution time for a mi to send data on behalf of 
query Q is Ei * SQ, where SQ is the size of the requested data. 
        Period.  The period of the E2E task is equal to the period 
of the query for which the E2E task is delivering data, Pq.. 

Data Validity.   A real-time sensor reading will often 
have a time frame in which it is considered valid, and after 
which it is not useful.  For example, a temperature reading 
that was taken an hour ago may not be useful if the 
temperature of the monitored environment changes often.  
The validity of data requested by query Q is denoted Vq 

Deadline.  The deadline for the E2E task is computed 
based on the deadline of the query, dQ and the data validity of 
the data being requested, Vq. This computation synthesizes the 
constraints into a single deadline using a technique such as 
just-in-time data delivery [7]. Each subtask in the E2E task 
has an intermediate deadline. There are several ways to 
compute intermediate deadlines [6], and any of them could be 
used.  We will use a simple calculation for illustration. 
Consider the E2E task sending data originating at mote mi to 
the base station. The intermediate deadline of the subtask 
sending from mote mk to the next mote in the route, ml, is the 
E2E deadline dq, minus the product of the execution time Ei 
and the number of remaining hops from ml to the base station.  
This simple intermediate deadline assignment allows enough 
time to transmit the data at each mote in the route.  



        Resources.  We model the radios of the motes as shared 
resources. They are shared under the constraint that if two 
motes attempt to send to a mote mi at the same time, the two 
sends will interfere and fail (recall we make no assumptions 
about underlying MAC protocols). Thus, concurrency control 
techniques must be employed to create a correct schedule of 
transmissions.  Another constraint imposed on the shared 
radio resource is the radio buffer in each mote.  Each message 
to be sent by a particular mote must be prioritized, thus 
imposing a form of blocking on the tasks to be performed by 
the mote.   

To constructing a transmission schedule, we propose a 
locking technique similar to a read/write locking used in 
databases.  It uses two kinds of locks:  a send lock (S), which 
must be obtained on the sending mote; and a block send lock 
(B), which must be obtained for the receiving mote and for all 
of the receiving mote’s neighbors. That is, in order for subtask 
Ti-j to send data from mote mi to mote mj, the scheduler must 
allocate an S lock on mi and B locks on mj and all of mj’s 
neighbors. S locks are exclusive in that any mote locked with 
an S lock may not have any other lock on it.  B locks are 
compatible with each other.  For example, consider three 
nodes, X, Y and Z, where X and Z are both neighbors of Y.  If 
X wants to send data to Y, the middleware would require an S 
lock on X and B locks on Y and Z.  Thus, Z is blocked from 
sending to any of its neighbors (and thus interfering with X’s 
send) since it has a B lock, but it can receive from a neighbor 
other than Y. 
4. Some Issues to Consider 

In order to apply this model and mapping to real sensor 
networks, there are several important issues that need to be 
addressed, and we are currently working on these. 

Schedulability Analysis.  Once the sensor network has 
been mapped to the RTS model of tasks and resources, we 
would like to apply a schedulability analysis technique like 
those found in [6].  If we make several very strong 
assumptions about the sensor network, like know 
transmission times and reliable links, then we could use a 
technique such as time-demand-analysis to analyze and 
schedule the queries.  However, these assumptions are not 
realistic in most sensor network applications.  Instead, we are 
considering probabilistic scheduling techniques that can take 
into account the unreliability of links and varying 
transmission times.  We must also consider how to account 
for the sharing of the link resource not only among different 
nodes sending in the same neighborhood, but also within the 
radio buffer of the same node.  Existing scheduling 
techniques may consider this to be a type of blocking.  We 
will examine this further. 

Implementation.  We have begun to develop a 
middleware solution that involves an up front modeling and 
analysis tool that we have developed for real-time systems 
(OpenSTARS) [8].  In this solution, queries will be specified 
in a real-time extension of TinyDB [9] that is based on 
RTSQL [10].  The user will input the sensor network model 
into the OpenSTARS tool.  Each query will also be input into 
the tool, as they arise.  OpenSTARS will map the sensor 
network model to the real-time model, analyze it, and 
compute a schedule (if one can be found) that meets the 
specified timing constraints.  Then TinyDB will distribute the 
new schedule to those nodes that are affected by the new 
query. 

Time synchronization.  In order for the computed 
schedule to work across the sensor network, the motes must 
be synchronized so that they all have the same understanding 
of when a time slot in the schedule occurs.  There are various 
algorithms for time synchronization in sensor networks [11, 
12, 13] that we are considering. 

Scalability.  With a large sensor field the number of tasks 
and resources can explode, making computing a schedule 
infeasible. We are investigating techniques that abstract 
portions of the sensor network into a “meta node” that can 
then be analyzed and scheduled as if it were a single node in 
the network. By taking advantage of characteristics of some 
sensor network topologies it may be possible for OpenSTARS 
to decompose its analysis hierarchically and mitigate some of 
the state explosion. It may be, however, that our middleware 
will have limits on the sizes of sensor networks that it can 
schedule. 
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