
Modeling Real-Time Queries in Sensor Networks

Lisa DiPippo, Victor Fay-Wolfe, David Tucker, Kevin L Bryan, Tiegeng Ren,
William Day, Matthew Murphy, Tim Henry

Computer Science and Statistics, University of Rhode Island
{dipippo, wolfe, tucker, bryank, rentg, wday, murphym, henry}@cs.uri.edu

1. Introduction
Many wireless sensor network applications have real-time

requirements where sensed data must be delivered to a base
station within a deadline and before the data becomes old.
For example, a system that monitors temperature in a nuclear
power plant would require that the readings be reported to a
base station within enough time for a proper response to be
made to a rapid increase in the temperature.

A great deal of research exists for scheduling in
traditional networks. Our goal is to leverage some of this
work to provide scheduling analysis and techniques for sensor
networks. This abstract presents a mapping of a well-known
real-time model to a particular type of sensor network
application in which queries are made at a base station, and
results are collected in the network and routed back to the
base station.

Some work has been done in the area of real-time
scheduling for sensor networks [1,2,3,4,5]. However, in most
of these cases, scheduling is ad hoc, and there is no overall
model to provide a level of certainty that the timing
constraints will be met.

2. Model

Assumptions. As a starting point, we assume a static
sensor network with known locations of motes and known
reliability of communication links, such as might be found in
a monitoring a nuclear plant or monitoring a relatively stable
environment. We assume that there can be multiple base
stations, each of which has an internal model of the sensor
network (described below). We assume that the queries for
sensed data are periodic, long-lived, and that some have
timing constraints on both the query and the validity of the
data. Regular monitoring of nuclear reactor temperature data
is an example of such a query.

Motes and Network. Each mote, mi, has (limited)
computing resources, a radio, and possibly a sensor. Between
each pair of motes, mi and mj, we define communication
reliability, Rij. Each mote, mi, has a set of neighbors Ni that
represents the set of all nodes with which mi can communicate
with a reliability above a threshold Rmin.

Queries. Each query, Q, is periodic (PQ) and may have a
deadline (DQ) that is different from the period. The size of a
data item requested by query Q is denoted SQ.

3. Schedulability Mapping and Analysis
In order to leverage the rich scheduling theory that exists,

we map the well-known real-time model consisting of end-to-
end tasks and resources [6], to our model of a real-time sensor
network.

Tasks. The passing of data from a sensor mote to the
base station is represented as an end-to-end task (E2E task).
That is, the E2E task starts from the point where the data was
collected, goes through intermediate motes in the route, and
ends at the base station on which the query originated. Each
sending of data from one mote to another in the route is
represented as a subtask. Suppose that a mote mi requires two
hops to get its data to the base station, by going through mote
mj. The sending of the data from mi to the base station
becomes an E2E task with two subtasks: mi → mj and mj →
base station. There are dependencies among the subtasks such
that one subtask may not execute until the subtask that sends
to it is complete.

Execution time. The sending of a piece of data
represents the execution time of the task. The time it takes a
mote to transmit a unit of data originating at mote mi is Ei.
Thus, the execution time for a mi to send data on behalf of
query Q is Ei * SQ, where SQ is the size of the requested data.
 Period. The period of the E2E task is equal to the period
of the query for which the E2E task is delivering data, Pq..

Data Validity. A real-time sensor reading will often
have a time frame in which it is considered valid, and after
which it is not useful. For example, a temperature reading
that was taken an hour ago may not be useful if the
temperature of the monitored environment changes often.
The validity of data requested by query Q is denoted Vq

Deadline. The deadline for the E2E task is computed
based on the deadline of the query, dQ and the data validity of
the data being requested, Vq. This computation synthesizes the
constraints into a single deadline using a technique such as
just-in-time data delivery [7]. Each subtask in the E2E task
has an intermediate deadline. There are several ways to
compute intermediate deadlines [6], and any of them could be
used. We will use a simple calculation for illustration.
Consider the E2E task sending data originating at mote mi to
the base station. The intermediate deadline of the subtask
sending from mote mk to the next mote in the route, ml, is the
E2E deadline dq, minus the product of the execution time Ei
and the number of remaining hops from ml to the base station.
This simple intermediate deadline assignment allows enough
time to transmit the data at each mote in the route.

 Resources. We model the radios of the motes as shared
resources. They are shared under the constraint that if two
motes attempt to send to a mote mi at the same time, the two
sends will interfere and fail (recall we make no assumptions
about underlying MAC protocols). Thus, concurrency control
techniques must be employed to create a correct schedule of
transmissions. Another constraint imposed on the shared
radio resource is the radio buffer in each mote. Each message
to be sent by a particular mote must be prioritized, thus
imposing a form of blocking on the tasks to be performed by
the mote.

To constructing a transmission schedule, we propose a
locking technique similar to a read/write locking used in
databases. It uses two kinds of locks: a send lock (S), which
must be obtained on the sending mote; and a block send lock
(B), which must be obtained for the receiving mote and for all
of the receiving mote’s neighbors. That is, in order for subtask
Ti-j to send data from mote mi to mote mj, the scheduler must
allocate an S lock on mi and B locks on mj and all of mj’s
neighbors. S locks are exclusive in that any mote locked with
an S lock may not have any other lock on it. B locks are
compatible with each other. For example, consider three
nodes, X, Y and Z, where X and Z are both neighbors of Y. If
X wants to send data to Y, the middleware would require an S
lock on X and B locks on Y and Z. Thus, Z is blocked from
sending to any of its neighbors (and thus interfering with X’s
send) since it has a B lock, but it can receive from a neighbor
other than Y.
4. Some Issues to Consider

In order to apply this model and mapping to real sensor
networks, there are several important issues that need to be
addressed, and we are currently working on these.

Schedulability Analysis. Once the sensor network has
been mapped to the RTS model of tasks and resources, we
would like to apply a schedulability analysis technique like
those found in [6]. If we make several very strong
assumptions about the sensor network, like know
transmission times and reliable links, then we could use a
technique such as time-demand-analysis to analyze and
schedule the queries. However, these assumptions are not
realistic in most sensor network applications. Instead, we are
considering probabilistic scheduling techniques that can take
into account the unreliability of links and varying
transmission times. We must also consider how to account
for the sharing of the link resource not only among different
nodes sending in the same neighborhood, but also within the
radio buffer of the same node. Existing scheduling
techniques may consider this to be a type of blocking. We
will examine this further.

Implementation. We have begun to develop a
middleware solution that involves an up front modeling and
analysis tool that we have developed for real-time systems
(OpenSTARS) [8]. In this solution, queries will be specified
in a real-time extension of TinyDB [9] that is based on
RTSQL [10]. The user will input the sensor network model
into the OpenSTARS tool. Each query will also be input into
the tool, as they arise. OpenSTARS will map the sensor
network model to the real-time model, analyze it, and
compute a schedule (if one can be found) that meets the
specified timing constraints. Then TinyDB will distribute the
new schedule to those nodes that are affected by the new
query.

Time synchronization. In order for the computed
schedule to work across the sensor network, the motes must
be synchronized so that they all have the same understanding
of when a time slot in the schedule occurs. There are various
algorithms for time synchronization in sensor networks [11,
12, 13] that we are considering.

Scalability. With a large sensor field the number of tasks
and resources can explode, making computing a schedule
infeasible. We are investigating techniques that abstract
portions of the sensor network into a “meta node” that can
then be analyzed and scheduled as if it were a single node in
the network. By taking advantage of characteristics of some
sensor network topologies it may be possible for OpenSTARS
to decompose its analysis hierarchically and mitigate some of
the state explosion. It may be, however, that our middleware
will have limits on the sizes of sensor networks that it can
schedule.

References.

[1] C. Lu, B. Blum, T. Abdelzaher, J. Stankovic, T. He, RAP: A

Real-Time Communication Architecture for Large-Scale
Wireless Sensor Networks, Proceedings of the 2002 IEEE Real-
Time and Embedded Technology and Applications Symposium.

 [2] S. Li, S. Son, and J. Stankovic. Event Detection Services Using
Data Service Middleware in Distributed Sensor Networks.
Proceedings of the 2nd Internnational Workshop on Information
Processing in Sensor Networks, 2003.

[3] T. He, H. Stankovic, C. Lu, T. Abdelzaher, SPEED: A Stateless
Protocol for Real-Time Communication in Sensor Networks,
Proceedings of the 2003 International Conference on
Distributed Systems, May 2003

[4] Yilmazer C. Lu, B. Blum, T. Abdelzaher, J. Stankovic, T. He,
RAP: A Real-Time Communication Architecture for Large-
Scale Wireless Sensor Networks, Proceedings of the 2002 Real-
Time and Embedded Technology and Applications Symposium,
June 2002.

[5] T. Abdelzaher, S. Prabh, R. Kiran, On Real-time Capacity
Limits of Multihop Wireless Sensor Networks, Proceedings of
the 2004 Real-Time Systems Symposium, Dec. 2004.

[6] J. Liu, Real-Time Systems, Prentice-Hall, 2000.
[7] Angela Uvarov, Lisa Cingiser DiPippo, Victor Fay Wolfe,

Kevin Bryan, Patrick Gadrow, Timothy Henry, Matthew
Murphy, Paul R. Work, Louis P. DiPalma, Static Real-Time
Data Distribution, Proceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium 2004, 502-
509.

[8] K. Bryan, T. Ren, J. Zhang, L. DiPippo, V. Fay-Wolfe, The
Design of the OpenSTARS Adaptive Analyzer for Real-Time
Distributed Systems. Proceedings of the 2005 Workshop on
Parallel and Distributed Real-Time Systems, April 2005.

[9] S. Madden, M. Franklin, J. Hellerstein, W. Hong, The design of
an acquisitional query processor for sensor networks,
Proceedings of the 2003 ACM International Conference on
Management of Data, 2003.

[10] Paul Fortier, Victor Fay Wolfe, and JJ Prichard. Flexible real-
time SQL transactions. Proceedings of the 1994 IEEE Real-
Time Systems Symposium, Dec. 1994.

[11] G. Ganeriwal, R. Kumar, M.B. Srivastava. Timing-Sync
Protocol for Sensor Networks. Sensys 2003.

[12] M. Maroti, B. Kusy, G. Simon, A. Ledeczi. The Flooding Time
Synchronization Protocol. Sensys 2004.

[13] J.E. Elson, L. Girod, D. Estrin. Fine-Grained Network Time
Synchronization using Reference Broadcasts. OSDI 2002.

	Introduction
	Model
	Schedulability Mapping and Analysis
	Some Issues to Consider

